Depths of Powers of the Edge Ideal of a Tree

نویسنده

  • SUSAN MOREY
چکیده

Lower bounds are given for the depths of R/I for t ≥ 1 when I is the edge ideal of a tree or forest. The bounds are given in terms of the diameter of the tree, or in case of a forest, the largest diameter of a connected component and the number of connected components. These lower bounds provide a lower bound on the power for which the depths stabilize.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An upper bound for the regularity of powers of edge ideals

‎A recent result due to Ha and Van Tuyl proved that the Castelnuovo-Mumford regularity of the quotient ring $R/I(G)$ is at most matching number of $G$‎, ‎denoted by match$(G)$‎. ‎In this paper‎, ‎we provide a generalization of this result for powers of edge ideals‎. ‎More precisely‎, ‎we show that for every graph $G$ and every $sgeq 1$‎, ‎$${rm reg}( R‎/ ‎I(G)^{s})leq (2s-1) |E(G)|^{s-1} {rm ma...

متن کامل

Distinguishing number and distinguishing index of natural and fractional powers of graphs

‎The distinguishing number (resp. index) $D(G)$ ($D'(G)$) of a graph $G$ is the least integer $d$‎ ‎such that $G$ has an vertex labeling (resp. edge labeling) with $d$ labels that is preserved only by a trivial‎ ‎automorphism‎. ‎For any $n in mathbb{N}$‎, ‎the $n$-subdivision of $G$ is a simple graph $G^{frac{1}{n}}$ which is constructed by replacing each edge of $G$ with a path of length $n$...

متن کامل

Linear Resolutions of Powers of Generalized Mixed Product Ideals

Let L be the generalized mixed product ideal induced by a monomial ideal I. In this paper we compute powers of the genearlized mixed product ideals and show that Lk  have a linear resolution if and only if Ik have a linear resolution for all k. We also introduce the generalized mixed polymatroidal ideals and prove that powers and monomial localizations of a generalized mixed polymatroidal ideal...

متن کامل

Topics on the Ratliff-Rush Closure of an Ideal

Introduction Let  be a Noetherian ring with unity and    be a regular ideal of , that is,  contains a nonzerodivisor. Let . Then . The :union: of this family, , is an interesting ideal first studied by Ratliff and Rush in [15]. ‎  The Ratliff-Rush closure of  ‎ is defined by‎ . ‎ A regular ideal  for which ‎‎ is called Ratliff-Rush ideal.‎‏‎ ‎ The present paper, reviews some of the known prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009